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Sequential recommendation systems aim to exploit users’ sequential behavior patterns to capture their in-

teraction intentions and improve recommendation accuracy. Existing sequential recommendation methods

mainly focus on modeling the items’ chronological relationships in each individual user behavior sequence,

which may not be effective in making accurate and robust recommendations. On the one hand, the perfor-

mance of existing sequential recommendation methods is usually sensitive to the length of a user’s behavior

sequence (i.e., the list of a user’s historically interacted items). On the other hand, besides the context informa-

tion in each individual user behavior sequence, the collaborative information among different users’ behavior

sequences is also crucial to make accurate recommendations. However, this kind of information is usually

ignored by existing sequential recommendation methods. In this work, we propose a new sequential recom-

mendation framework, which encodes the context information in each individual user behavior sequence as

well as the collaborative information among the behavior sequences of different users, through building a lo-

cal dependency graph for each item. We conduct extensive experiments to compare the proposed model with

state-of-the-art sequential recommendation methods on five benchmark datasets. The experimental results

demonstrate that the proposed model is able to achieve better recommendation performance than existing

methods, by incorporating collaborative information.
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1 INTRODUCTION

Effectively understanding users’ sequential behaviors has been proven to be crucial for building
sequential recommendation systems, which generate item recommendations to users based on
their historical behavior sequences. Various deep learning techniques, e.g., Recurrent Neural
Networks (RNNs) [16, 41],Convolutional Neural Networks (CNNs) [46], and attention mech-
anisms [23, 42, 45, 61, 74], have been applied for sequential recommendations. In general, these
existing methods mainly focus on capturing the chronological relationships between items in each
user’s behavior sequence to predict her next interactions with items.
Although existing deep learning-based methods usually achieve state-of-the-art sequential

recommendation performance, they may still suffer from the following deficiencies. First, con-
ventional sequential recommendation methods, including RNN-based models, transformer-based
models, and Graph Neural Network (GNN)-based models, usually utilize a unitary message
passing strategy: they only encode information along each individual user behavior sequence to
make predictions for this user. For example, RNN-basedmodels iteratively encode the behavior his-
tory of a user; transformer-based models directly extract the information from the entire behavior
sequence of a user through self-attention. They ignore the collaborative information among the
behavior sequences of other similar users. If the user’s behavior suddenly fluctuates, for exam-
ple, the user interacts with un-relevant items out of curiosity, then the recommendation model
may be disturbed and fail to make accurate predictions. Second, the performance of traditional se-
quential recommendation models, such as those presented in References [23, 32, 45], is sensitive
to the length of user behavior sequences. An over-reliance on individual user histories can limit
model performance, particularly when a user’s behavior history is short. Thus, solely modeling
the item chronological relationships in each individual user’s behavior sequence is not enough for
sequential recommendations.
In this work, we propose a novel sequential recommendation architecture, which can pass mes-

sages not only through each individual user behavior sequence but also through the global item
dependency graph built from all users’ behavior sequences. The global item dependency graph
integrates user collaboration information, which aligns with the preferences of the target user,
thereby enhancing the accuracy of predictions pertaining to the target user. This is motivated by
the recent success of applying GNNs to exploit different item graphs, e.g., user-item interaction
graph [14, 56], item knowledge graph [31], and item multi-modal graph [30], to model users’ pref-
erence on items. The proposed architecture utilizes higher-order item dependency information,
which can surpass the constraint that the length of a user behavior sequence is limited, and also
construct more robust representations for each user’s behaviours, beyond the user’s chronological
behavior patterns.
Figure 1 shows the message passing strategies of different sequential recommendation models.

As shown in Figure 1(a), conventional RNN- and Transformer-based sequential recommendation
models pass messages following the user behavior sequence [23, 45]. The graph-based sequential
recommendation methods [35, 40, 55, 58, 62, 68] first build the item relation graphs and then ex-
tract information along the edges of the graphs with GNNs, as shown in Figure 1(b). Our proposed
recommendation architecture, shown in Figure 1(c), passes messages between relevant items in
the item dependency graph and also along the user behavior sequences. The proposed method
can not only utilize the sequential behavior information but also the higher-order context infor-
mation (i.e., item’s dependency subgraph), which can provide additional information to the model
and mitigate the issues caused by user behavior fluctuations. Specifically, the issue may happen
when a user interacts with un-relevant items out of curiosity, for example, the user wants to buy
a phone but clicks a computer advertisement instead. In this case, conventional sequential recom-
mendation models such as SASRec [23] may be misled by this action, and have a higher chance
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Fig. 1. Message passing in sequential recommendations. (a) Sequential message passing: Flow of messages is

passed along the user behavior sequences. (b) Message passing on graphs: Messages are aggregated through

the message passing on the graph topology. (c) Our proposed message passing architecture: User behavior

messages are passed along both item-item graphs and user behavior sequences.

to recommend computers to the user. However, our model will be more robust to this fluctuation.
This is because the impact on the message passing in the higher-order context will be much less
than the impact of the message passing on the item sequence, as phones and computers are both
in the electronics category and share many common higher-order context information. Thus, the
higher-order information can enhance the tolerance of the model to user behavior fluctuations
and improves the model’s prediction accuracy.
However, in practice, it is challenging to jointly pass messages in the item dependency graph

using GNNs and pass messages along the item sequences (i.e., a user’s behavior sequence) using
RNN or Transformer structures.
Typical GNNmodels [14, 24, 51, 56] need to process the entire item graph adjacency or Laplacian

matrix, to obtain the localized representation of each node, with time complexity proportional to
the total number of edges. However, Transformer structures only require traces of user behaviors
in an individual user behavior sequence to obtain the sequence representation. Thus, directly stack-
ing GNNs and Transformer structures is not efficient. In each batch, GNNs compute the localized
representation for each node, but only a small amount of node features (along the user behavior
trace) will be passed to the Transformer modules. Such a process may cause great computational
cost, especially when processing large-scale item dependency graphs.
To solve the above issues, we propose a hierarchical graph aggregation mechanism to extract

the representations of the 1 to K-hop sub-graphs of each node’s neighborhood. Then, we pass
the sub-graph representations to a transformer-based model. Meanwhile, we also form 1 to K-hop
views of each item’s neighborhood. The larger sub-graph, the more item dependency information
is preserved. The smaller sub-graph, the more the chronological relationship of the current user
behaviors is enhanced. Then, we aggregate the multiple views and obtain the final representation
of each user behavior sequence. Note that the graph model incorporates global item relationships
instead of the user-specific chronological relationships extracted by the sequential model. Com-
pared to a single view, the multi-view architecture can form more comprehensive representations
of the user behaviors.
Our main contributions are summarized as follows.

—We propose a hierarchical graph aggregation model to support efficient graph aggregation
operations on graphs, and analyze its running complexity, comparing with commonly used
graph aggregation methods.
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—We apply the proposed hierarchical graph aggregation model to build a novel sequential
recommendation framework, which has better capability of user behavior modeling than
existing sequential recommendation models.

—We also design a multi-view architecture and propose the Dirichlet sampling method to
improve the performance and robustness of the sequential recommendationmodel.We show
the findings in the ablation studies.

—We conduct extensive experiments on five real datasets with comparisons to state-of-the-
art sequential recommendation methods. The experimental results show that the proposed
model obtains superior performance than baseline methods.

2 RELATEDWORK

Sequential recommendation (SR) is one of the main streams of recommender systems, which
focuses on exploiting users’ sequential behaviors to make recommendations [11, 60, 66]. The se-
quential recommendation is based on the assumption that historical behaviors can reflect the trend
of the user’s preference and therefore, we can recommend proper items not only based on the
user’s preference but also based on the user’s historical behaviors. Prior works in sequential rec-
ommendations use the Markov chain to model transitions among the user-item interactions in a
user behavior sequence. For example, Feng et al. [12] proposed embedding Markov chains into
Euclidean space and calculating transition probabilities between interactions based on their Eu-
clidean distance.
Latent representation models, however, use learned embeddings of users and items to capture

more implicit and complex dependencies between interactions. FPMC [43] combines matrix factor-
ization and first-order Markov chain to model users’ global preferences and short-term interests.
Hidasi et al. [18] proposed a factorization framework for context-aware SR. References [53, 54]
learn latent representations of users and items as input to a network and calculate interaction
scores between users and items or successive user actions.
In recent years, DNN-based SR models, especially those using RNNs such as Long Short-term

Memory (LSTM) [59], Gated Recurrent Unit (GRU) [7], as well as Transformers [50], have
gained popularity due to their ability to model sequential dependencies effectively. These models
incorporate multiple hidden layers to capture complex relationships among user-item interactions,
resulting in more accurate recommendations. In addition to RNNs, Tang et al. [47] utilized CNNs
to achieve top-K SR. Furthermore, inspired by the success of the Transformer model in NLP tasks,
Kang et al. proposed SASRec [23], a deep SR model incorporating the self-attention mechanism
from Transformer to capture long-term semantics and emphasize the most relevant interactions
when making predictions. To improve the smoothness of SR models, Zhou et al. [77] designed a
multi-view smoothness (MVS) optimization framework to smooth and enrich the one-hot rep-
resentations of contexts and labels to better depict the underlying user preference. Recently, there
has been a growing interest in applying GNNs to model high-order features and capture complex
transitions over user-item interactions in a sequence [24, 51]. In general, from the architectural
perspective, modern sequential recommendation models can be mainly categorized into RNNs ar-
chitecture, transformers architecture and GNNs architecture.

2.1 RNN-based Methods

The RNN-based models are pioneer deep learning models to extract information from user behav-
ior sequences [66]. Hidasi et al. [17] applied RNN to model the user behavior patterns by taking
the user’s clicked items into the RNN structure and outputting the prediction of the user’s prefer-
ence for the next item. Hidasi and Karatzoglou [16] further enhanced the GRU model by adopting
a new sampling method and loss function. Xu et al. [65] designed recurrent convolutional neural
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networks to hierarchically combine recurrent networks and convolutional networks to analyze
users’ sequential behaviors and provide further recommendations. Yu et al. [69] applied LSTM
model with a time-aware controller and a content-aware to capture user’s long-term and short-
term preferences. Zheng et al. [73] used RNNs model with sentiment attention networks to extract
the influence of temporal sentiments on user preferences, to enhance SR. Cui et al. [8] designed
a meta-learned sequential-knowledge-aware recommender model incorporating RNNs and GATs
to extract sequential information from sequential knowledge graphs.

2.2 Transformer-based Methods

The transformer architecture can not only capture long-term semantics (like RNN) but it can also
focus on relatively few high-impact actions through the attention mechanism, which makes it
an outstanding architecture for sequential recommendations. Kang and McAuley [23] used Trans-
former instead of RNN to improve sequential recommendation performance. Sun et al. [45] adapted
the famous BERT [9] architecture in natural language processing, replacing the single-directional
attention in SASRec [23] to bi-directional attention architecture. Fan et al. [10] introduced distri-
bution encoding into the representation of user’s sequential preferences. Xie et al. [64] applied the
contrastive learning method to the transformer encoders to enhance sequential recommendations
accuracy. Ma et al. [33] improved the transformer-based sequential recommendation models with
a preference editing-based self-supervised learning mechanism.
To improve the sequential recommendation performance, some methods exploit additional fea-

tures, such as user profiles and item properties [19, 26]. DIN [76] and DIEN [74] adopt user profiles
and context features along with the user behavior histories for sequential recommendations. Ren
et al. [42] applied generative adversarial networks with transformers to process the item context
information. Based on transformers, Li et al. [27] developed a time-interval aware self-attention
model to encode time information into the sequential recommendation model. Liu et al. [29] en-
coded inter-sequence relations for the sequential recommendation.

2.3 Graph-based Methods

Graph-based models are another mainstream of sequential recommendations, especially in session
recommendation scenarios. Instead of learning from the user-item bipartite graph, session graphs
are constructed based on the user behaviors in certain sessions and apply graph-based models,
e.g., GCN, GraphSage, and GAT, to extract graph features and generate recommendations [35, 40,
55, 58, 62, 68]. Recommendation methods based on session graphs usually involve two types of
graphs: the graph built from the current session to learn item embeddings and the global user
session graphs.
Extracting information from each user’s session to predict the next user’s behaviors in this

session is a common solution in various session-based recommendation methods. For example,
Wu et al. [62] designed the SRGNN model, which is a GNN model integrated with recurrent gated
units, to predict the next preferred item for each user based on the current user’s session graph.
Qiu et al. [39] proposed FGNN to learn each item representation by aggregating its neighbors’
embeddings throughmulti-head attention and obtain the final session representation by repeatedly
combining each learnt embeddings with the relevance of each time to the session. DUVRec [67]
utilizes the item view and factor view to encode both user preferences from the item-level as well
as higher level through coarse-grained graphs. Moreover, SURGE [3] employs a metric learning
method to automatically build graph structures for each sequence, and then uses interest-fusion
graph convolutional layers and interest-extraction graph pooling layers to extract long-/short-
term interest for sequential prediction. Huang et al. [20] applied position information as well as
temporal information incorporating graph neural networks to make sequential recommendations
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for user sessions. Zhang et al. [71] designed the kernel-enhanced transformer networks to fuse a
substitutable product-product graph and a complementary product-product graph, to enhance the
expressive ability of the GNN recommendation model.
Many recent methods utilize the global session graph to take advantage of the external con-

text of user sessions. For example, GCE-GNN [58] utilizes the global-level and session-level item
correlations to learn bi-level item representations, and aggregates the learnt item representations
by a soft attention mechanism. DHCN [63] models all users’ session data as a hypergraph, and
designs a dual channel hypergraph convolutional network to process both the hypergraph and
line graph data. GES [79] fuses both the global session graph and the semantic graph that records
semantic item relations built upon item attributes, to predict the user behaviors in each session.
FGNN [38] utilizes cross-session graph information to learn the representation of each individual
session. These graph-based methods share some similar spirits with our proposed method. In our
method, we also utilize the context information from the global graph to enhance the user be-
havior modeling. However, the major difference is that we construct multi-view graph representa-
tions for user behaviors, while processing each viewwith themulti-view transformers. This design
enables higher-order message-passing along the user behavior sequence. In contrast, in existing
GNN models, the higher-order information does not dynamically flow along the user behavior
sequence, but mainly serves as a static global context to assist information extraction from local
graphs.

2.4 Sequential Modeling with User Collaborative Information

In addition to modeling a user’s past actions, a slew of methods incorporate supplementary user
collaborative information to enhance the precision of sequential recommendations, aiming for
improved accuracy in predicting the subsequent item. For instance, Reference [2] capitalizes on
the category information of each item within the user’s behavioral sequence, culminating in the
proposal of CoCoRec (CategOry-aware COllaborative sequential Recommender).
Drawing from a congruent line of thought, Reference [48] centers its approach around discern-

ing a user’s latent intent for specific categories. This is achieved via a temporal convolutional net-
work layer, which subsequently steers the sequential recommendation model to adeptly forecast
the user’s next item of preference. However, Reference [36] brings to the fore the Intent-guided
Collaborative Machine for Session-based Recommendation (ICM-SR). This mechanism en-
codes an active session by synergizing both the prior sequential items and the most recent one.
The result is a coherent session representation, mirroring a user’s intent. Such intent becomes in-
strumental in pinpointing the relevant neighboring sessions. The overall prediction then emerges
as a fusion of insights from the current session and its neighboring counterparts. [78] introduced
the key-array memory network (KA-MemNN). This network is architecturally designed to hi-
erarchically merge both a user’s intention and preference, offering a more nuanced prediction of
the ensuing item. GRU4REC [21] employs recurrent neural networks to encapsulate user behaviors
within a session and predict the next item of that session. In contrast, our method efficiently adopts
other user’s behavior histories by our proposed multi-view GNN-transformer model to enhance
the prediction of the current user.

2.5 Reinforcement-learning-based Methods

Sequential recommendation can be aptly framed as a sequential decision-making problem, cap-
turing the nuances of user-system interaction more comprehensively than when approached as a
mere classification or prediction challenge. This is why it is quite fitting to model the sequential
recommendation using a Markov decision process (MDP) and consequently address it using
reinforcement learning (RL) algorithms [1].
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Echoing this perspective, there has been a notable surge in research works focusing on sequen-
tial recommendations harnessed by reinforcement learning. For instance, Reference [37] delves
into an innovative reinforcement learning approach for sentiment-augmented knowledge graphs,
pioneering the Sentiment-Aware Policy Learning (SAPL), which guides recommendations
based on RL techniques. Similarly, Reference [57] unveiled a distinctive RL framework that lever-
ages both ontology-view and instance-view Knowledge Graphs (KGs) to capture multi-faceted
user interests. Moreover, the Knowledge-guidEd Reinforcement Learning model (KERL), as
proposed by Reference [52], adeptly integrates KG information within an RL framework, marking
a significant stride in sequential recommendation strategies.

3 PROPOSED RECOMMENDATION MODEL

3.1 Preliminaries

In this work, we denote the set of users byU and the set of items by I. For each user u, we denote
the sequence of the user’s interacted items by Iu = [iu1 , iu2 , . . . , iunu ], where the items are sorted in
chronological order based on the interaction timestamps, and nu denotes the length of the item
sequence Iu . Moreover, we denote the set of all the observed user behavior sequences by Ds . The
main objective of a sequential recommendation model is to first predict the probability that a user
u interacts with an item i , given the list of the user’s historical items Iu . Then, the candidate items
are ranked based on the predicted dependency probabilities in descending order, and the N top-
ranked items are recommended to the user. Table 1 summarizes the mostly used notations in this
article.
With all the observed user behavior sequencesDs , we first use a directed dependency graphG to

describe the sequential dependency relationship between two items in the user behavior sequences.
Specifically, we use Ti, j to denote item j’s dependency on item i , and define it as follows:

Ti, j =

∑
u ∈U I[tu,i < tu, j ]∑

u ∈U
∑

k ∈I I[tu,i < tu,k ]
, (1)

where tu,i is the timestamp when user u interacts with item i , and I(·) = 1 if the condition is true,
and 0 otherwise. In Equation (1), a higher value of Ti, j indicates a higher chance that a user would
like to interact with the item j, given that she has interacted with the item i . Then, if Ti, j > 0, then
we build an edge from item i to item j in G. It is worth noting that T serves as the transition proba-
bility of any user clicking item j after she has clicked item i , and the item dependency (transition)
matrix T ∈ Rn×n is an asymmetric row-stochastic matrix, i.e., the sum of each row is 1, where n is
the number of items.
We further define the k-hop item transition matrix T(k ) =

∏k
i=1 T, and we denote the element in

the ith row, jth column of T(k ) as T(k )
i, j , which also means the transition probability of any user to

click item j after he/she has clicked item i kth steps ago. When k increases, the number of k-hop
neighbours increases exponentially, and we may obtain a large amount of k-hop neighbours with

low transition probability T
(k )
i, j . Small transition probability indicates low dependencies, thus such

neighbours are not informative enough for message passing, and they can be dropped during train-
ing to increase the model processing speed. To this end, in this work, we propose to choose the top
h neighbours for each hop to increase the processing speed, while capturing enough information
from the global context. Thus, to compute T(k ), we calculate by T(k ) = σ (T(k−1))σ (T), where σ (·)
denotes the filter method to select the top h elements for each row.
Note that the k-hop transition matrix can be computed in the data prepossessing stage. As

σ (T(k−1))σ (T) is a sparse matrix multiplication, the complexity for each matrix multiplication can
be bounded by min(O(n2+o(1)),O(n2.38))[70].
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Table 1. List of Notations

Notations Description

U, I Set of users and items
Iu Item sequence interacted by u
Ds Set of observed user behavior sequences
G Item-item correlation graph
E[·] Expectation
Lu Sequence length of user u
L Maximum input length to the model
d Dimension of latent representations

τ (k )u,i Transition probability from item i to item j at k steps

ru,i Interaction score of the {u, i} pair
uk kth view of user representations
θ Neural network parameters
θk Neural network parameters for the kth view

T(k ) k-hop item dependency (transition) matrix

T
(k )
i, j k-hop item dependency score from item i to item j

N(k )
i k-hop neighbours of the item i

ei Embedding of node i
{αk }Kk=1 The set of hyper-parameters for the Dirichlet distribution

D(x |α) Dirichlet distribution for random variable x

3.2 Overall Structure

Figure 2 shows the overall architecture of the proposed sequential recommendation framework.
For a given item sequence Iu , rather than directly applying sequence encoding methods to obtain
the sequence representation, we first extract sub-graphs from G to augment the sequence Iu . For
each item i ∈ Iu , we extract the sub-graph of G containing all the 1 to K hop neighbors of i , and
then generate different “views” of item i’s neighborhood. The sub-graph is also the ego-graph with
the node i as the central node, and each view of the ego-graph consists of the nodes that have the
same distance to the central node. Specifically, the kth view only contains the k-hop neighbours
of item i .
Figure 3 shows an example of how to build multi-views of the neighborhood of each item in

a user behavior sequence. One challenge in searching for k-hop neighbors is that the number of
such neighbors grows exponentially as k increases. This results in a more complex model as k
gets larger. To address this issue, we have developed the Dirichlet weight sampling method, which
allows for the selection of important k-hop neighbors while avoiding overfitting on the selected
neighbors. Details will be elaborated in Section 3.2.2.
Then, for the kth view, we use an efficient graph aggregation method to extract the local graph

information of each item and apply a Transformer [45] module to capture the sequential informa-
tion among all the items in the sequence Iu and obtain the sequence embedding from the k views.
In this way, the sequence embedding can capture both the sequential behavior patterns of a spe-
cific user and the collaborative information among different users through the item dependency
sub-graphs.
In the following step, we aggregate multiple views through attention network to generate a

unified representation of the user behavior sequence for predicting the next potential interaction
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Fig. 2. Architecture of the proposed framework. The input contains the user-clicked item sequence together

with the sub-graphs of the items from the item dependency graph. We form multiple views for the input

item sequence, and each view is passed through the hierarchical graph aggregation networks followed by

the transformer encoders. Finally, we combine the representations of the user preference frommultiple views

to predict the user’s next preferred item.

Fig. 3. Item dependency graph, where the yellow-colored trace represents the sequence of the user’s clicked

items. The red-colored nodes (i.e., 1-hop neighbours) represent the items that have strong dependencies with

the user-clicked items, which form the view of the first-hop neighbours. The green-colored nodes (i.e., 2-hop

neighbours) represent the items that have strong dependencies with the red-colored nodes, which form the

view of the second-hop neighbours.

items. Embeddings from different views are further aggregated using an attention network to gen-
erate a unified representation of the user behavior sequence for predicting the next potential in-
teraction items.

3.3 Graph Aggregation Networks

After extracting the local sub-graph for each item in the item sequence, we aim to obtain an em-
bedding for each item by aggregating its local dependency sub-graph information. One potential
solution is to use existing GNNs, e.g., Graph Convolutional Networks (GCNs) [24] and Graph
Attention Networks (GATs) [51], for message passing in the local sub-graph of each item. How-
ever, these existing GNNs are not preferred to be used in the proposed framework. Because they
need to process the whole graph by adding convolutional layers or attention layers to each node
of the whole graph, and obtain the next-hop embedding iteratively. Such a learning procedure is
usually time-consuming (refer to Section 3.7 for more discussions), and could hardly process a
large amount of frequently changing sub-graphs efficiently.

ACM Trans. Inf. Syst., Vol. 42, No. 6, Article 141. Publication date: June 2024.
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3.3.1 Intra-hop Aggregation. To improve the efficiency of message passing in the local sub-
graphs of items in Iu , we propose the following intra-hop aggregation procedure. For each item

i ∈ Iu , we treat it as the central node and denote its k-hop neighbors in G by N(k )
i . Then, we

perform the kth intra-hop aggregation via

e
(k )
i =

∑
j ∈N(k )

i

T
(k )
i, j ej , (2)

where ej is the initial embedding of node j. Based on Equation (2), the (k + 1)th hop aggregation
can be computed as follows:

e
(k+1)
i =

∑
j ∈N(k )

i

T
(k )
i, j

∑
m∈N(k+1)

j

T
(1)
j,mem

=
∑
j ∈I

T
(k )
i, j

∑
m∈I

T
(1)
j,mem =

∑
m∈N(k+1)

i

T
(k+1)
i,m em , (3)

which corresponds to Equation (2) by increasing k to k + 1. Equation (3) indicates that to perform
the kth hop aggregation for k ∈ {1, 2, . . . ,K}, we can neglect the 1-hop to (k−1)th hop sub-graphs
and directly aggregate the kth hop nodes using their dependency scores as the weights.
Comparedwith existing GCN-basedmodels that concatenatek layers to process thekth hop sub-

graphs, the proposed aggregation method can directly process the specific hop of the sub-graph.
Moreover, the proposed aggregation method is more suitable for the sequential recommendation
task. Because the item embeddings may be frequently changed in each batch of training samples.
In contrast, GCNs need to re-process the kth hop embeddings of the entire item graph for each
batch. Using GCN-based methods may significantly increase the computation time.

3.3.2 DirichletWeight Sampling. SinceT
(k )
i, j is an empirical estimation of the overall dependency

between items. For a specific user, such dependency may not reflect the exact relationships be-
tween items in the user-specific behavior sequence. Especially, when the interaction data is rela-
tively sparse, the item dependency might be biased due to the shortage of data.
Similar issues have been reported in many related works such as SSEPT [61] and SGCN [4],

where the stochastic masking is applied to the input data to avoid over-fitting due to data sparsity.

Intuitively, the model should not over-fit on specific T
(k )
i, j on top h neighbours. To mitigate the

inductive bias of the model and avoid over-fitting on transition pattern on the top h neighbours,
we propose the Dirichlet sampling method to stochastically sample the transition probability, i.e.,

the weight parameters T
(k )
i, j .

For a set of Dirichlet random variable {x1, . . . , xK } ∼ D(x|α), where α represents a set of
hyperparameters {αk }Kk=1, has the following probability density function,

f (x1, . . . , xK ;α1, . . . ,αK ) = 1

B(α)
K∏
k=1

x
αk−1
i , (4)

where B(·) denotes the Beta function and xk denotes the Dirichlet random variable of the kth hop
neighbours. The expectation of the random variable {x}K

k=1
∼ D(x|α) is E[xk ] = αk∑

k αk
. Further-

more, large hyper-parameters {α }K
k=1

imply that {x}K
k=1

are concentrated around their expected

value, while small {α }K
k=1

give high variance to {x}K
k=1

to make them less concentrated.

To be specific, based on the dependency score T
(k )
i, j , we can construct the Dirichlet distribution

so that the expectation of the random variable x(i, j,k ) that follows a Dirichlet distribution equals
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to T
(k )
i, j , i.e., E[x(i, j,k )] = T

(k )
i, j . This Dirichlet sampling is unbiased according to T

(k )
i, j . Finally, we

use x(i, j,k ) to replace T
(k )
i, j to represent the kth hop transition probability from item i to item j in

practice.
The advantage of using Dirichlet sampling to sample multinomial weight distribution rather

than using stochastic masking is that Dirichlet sampling can provide randomness to the transition
probability while maintaining unbiased sampling. In contrast, stochastic masking does not change
the transition probability but only provides binary selection on neighbours.

3.4 Sequence Embedding via Transformers

For each view, we first obtain the sub-graph representation of each item in the sequence by the
graph aggregation model. Then, we apply a set of transformer blocks on the item sequence to
obtain the representation of the item sequence at the kth view. For the item sequence whose length
nu < L, where L is the maximum length among all the sequences, we pad zero values at the
beginning of the sequence to make the lengths of all the sequences to be L.

3.4.1 Positional Encoding. We apply learnable positional embedding P ∈ RL×d referred to the
previous work [23, 45], and the user’s item sequence embedding at kth view Eu,k is performed by
an element-wise addition of item embedding and positional embedding,

Eu,k =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

e
(k )
s1 + p1

e
(k )
s2 + p2
. . .

e
(k )
sL + pL

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (5)

3.4.2 Multi-head Self-attention Blocks. We stack multiple self-attention blocks based on the
embedding layer to capture the sequential feature of the user u ∈ U. The conventional scaled

dot-product attention for the kth view is defined as Attention(Q,K,V) = softmax(QKT√
d
)V, where

Q = EuW
Q represents the query, K = EuW

K is the key, V = EuW
V is the value and d is the latent

dimension acting as the scaled factor to regularize the dot-product value. The learnable projection
matrices WQ ,WK ,WV ∈ Rd×d are used to project the item sequence embedding to Q, K, and
V, respectively. In this work, we design the multi-view multi-head self-attention blocks, which
provide multi-head attention for each view independently. Each self-attention block for the kth
view contains multiple attention heads, and the formula is defined as follows:

MultiHeadAtt
(
Elu,k

)
= [head1,k , head2,k , . . . , headh,k ]W H

k ,

headi,k = Attention(Qi,k ,Ki,k ,Vi,k ), (6)

where Qi,k = El
u,k

W
Q

i,k
, Ki,k = El

u,k
WK

i,k
, and Vi,k = El

u,k
WV

i,k
are the query, key, and value,

respectively.W
Q

i,k
,WK

i,k
,WV

i,k
∈ Rd×d/h . El

u,k
∈ RL×d is the input to the kth view, lth self-attention

block. WH
k

∈ Rd×d is the kth view projection matrix to obtain the output El+1
u,k

, which can be the

input to the next self-attention block. The output is then processed by the feed-forward layer.
Feed-forward Layer. The feed-forward layer provides non-linearity to the transformer and

supports interaction between dimensions. It consists of two affine transformations with a Gauss-
ian Error Linear Unit (GELU) in between, to process the input data xk from the kth view as
follows:

FFN(xk ) = GELU(xkW1,k + b1,k )W2,k + b2,k , (7)
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where W1,k , W2,k , b1,k , and b2,k are learnable parameters for the kth view, which are not shared
across layers.

3.5 Multi-view Aggregation

After performing the aforementioned steps, for each view k ∈ {0, 1, . . . ,K}, where k = 0 denotes
the view from the input item sequence without item-dependency graphs, we obtain an embedding
uk , which is the output from the FFN layer, for a user sequence Iu . In the following, we further
merge the embeddings from all the (K + 1) views to generate an overall representation for each
specific user to capture his/her preference and context-aware intention. The aggregation is done by

using the attention mechanism via û =
∑K

k=0

exp(h�
k
uk )uk∑K

k=0 exp(h�k uk )
, where û denotes the overall embedding

for user u based on the set of (K + 1) views, and hk is a learnable parameter. It is worth noting that
uk is the output of the last FFN(xk ) layer. With the user embedding, a predicted interaction score
of user u and item i is computed as, r̂u,i = ûe�i , where ei is the embedding of item i .

3.6 Loss Functions

We use Ds to represent the training set of a recommender system, where Ds := {(ru,i ,u, i)|u ∈
U, i ∈ I}, and ru,i is the interaction score of the (u, i) pair. As our goal is to correctly predict the
potential user-item interactions, the main objective of the proposed model can be formulated as
follows:

min
θ

∑
(u,i)∈Ds

�main(ru,i , r̂u,i ), (8)

where ru,i is the ground-truth rating of item i given by user u, and r̂u,i is the predicted rating. We
denote r̂u,i = fθ (Iu , i), where fθ is our proposed model with a set of learnable parameters θ , and
Iu is the item sequence of user u. We adopt the binary-cross-entropy loss for �main , that is

�main =
∑

(u,i)∈Ds

[ − ru,i log(σ (fθ (Iu , i))) − (1 − ru,i )log(1 − σ (fθ (Iu , i)))
]
. (9)

Besides the main loss in Equation (9), we also aim to make use of multiple view information to
construct auxiliary losses to provide more discriminative information into our model learning. As
we obtain a representation of a user for each view before performing multi-view aggregation in
Section 3.5, we can construct an individual prediction model for each view k ∈ {0, 1, . . . ,K}, de-
noted by fθk (Iu , i), where θk ⊆ θ is the subset of parameters for view k . σ (·) denotes the activation
function, and we use the Sigmoid function similar as SASRec [23].
Thus, the final prediction of r̂u,i can be further decomposed into a convex combination of the

predicted results generated from each view: r̂u,i =
∑K

k=0wk fθk (Iu , i). Here, wk ∈ [0, 1] represents
the attention weight of kth view that can be obtained by the attention mechanism as elaborated in
Section 3.5, and fθk (Iu , i) denotes prediction score with the kth view’s transformer model. There-
fore, the binary-cross-entropy loss can be re-written as follows:

�main =
∑

(u,i)∈Ds

[
−ru,i log

(
σ
(∑

k

wk fθk (Iu , i)
))

− (1 − ru,i )log
(
1 − σ

(∑
k

wk fθk (Iu , i)
))]
. (10)

However, the above loss function causes biased updates for each individual model: the lower the
attention weight, the lesser the individual view’s model fθk is optimized. To solve this issue, we
propose an auxiliary loss �indiv that focuses on updating the network parameters in each individual
view, shown as follows:

�indiv =
∑
k

∑
(u,i)∈Ds

[−ru,i log(σ (fθk (Iu , i))) − (1 − ru,i )log(1 − σ (fθk (Iu , i)))
]
. (11)
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3.6.1 Mutual Information Maximization. Note that the auxiliary loss function in Equation (11)
can be optimized by minimizing each individual loss independently. However, minimizing
Equation (11) or Equation (9) does not guarantee the consensus of each view. Thus, we en-
code the consensus constraint into the predictions of different individual views on the same
user-item pair, by introducing another objective to maximize the mutual information between
different views. We propose to maximize the mutual information among the multiple views as
follows:

max
θ
Euk Iθ (uk ;U − uk ), (12)

where uk is the representations from the kth view, k ∈ {0, . . . ,K}. U − uk = {u0, . . . , uk−1,
uk+1, . . . , uK } denotes the representations from all views except uk , and Iθ (uk ;U − uk ) =∑

uk
pθ (u0, . . . , uK )logpθ (uk |U−uk )pθ (uk ) computes the mutual information between the view uk and

other views. By maximizing Equation (12), we expect that the multiple views will converge to a
consistent representation of the user’s preference. However, the mutual information is difficult

to compute. As Iθ (uk ,U − uk ) ∝ p(uk |U−uk )
p(uk ) , following Reference [34], we minimize the noise

contrastive loss as follows:

�contrast = − 1

K + 1

K∑
k=0

Euk log
f (uk ,U − uk )

f (uk ,U − uk ) +
∑

uneд f (uneд ,U − uk )
, (13)

where uneд is the sampled negative view’s representations from the batch. f (uk ,U − uk ) =
Sigmoid(〈uk ,

∑
j�k uj
K

〉) denotes the function used to calculate the similarity of the view uk to other
views, and 〈· , ·〉 denotes the inner product. In our methodology, negative views are derived from
the behavior sequences of users within the same batch, excluding the target user. For each user,
the total number of negative samples is (K +1)× (b −1), where b is the batch size in training. Since
the number of total negative samples is relatively large, in practice, for each user in each view,
we randomly sample b negative samples from the negative sample set with size (K + 1) × (b − 1).

Proposition 1. Suppose �contrast is driven in Equation (13) and let N be the total number of

training samples from the training set, the following inequality holds:

�contrast ≥ −Euk Iθ (uk ;U − uk ) + log(N ). (14)

Proof. Since the optimal value of I (uk ,U − uk ) is given by
p(uk |U−uk )

p(uk ) , due to the propor-

tional property as we discussed in Section 3.6.1, we can insert the ratio back to Equation (13) and
obtain

�contrast = − 1

K + 1

K∑
k=0

Euk log

⎡⎢⎢⎢⎢⎣
p(uk |U−uk )

p(uk )
p(uk |U−uk )

p(uk ) +
∑

uneg

p(uneg |U−uk )
p(uneg)

⎤⎥⎥⎥⎥⎦
=

1

K + 1

K∑
k=0

Euk log

⎡⎢⎢⎢⎢⎣
1 +

p (uk )
p (uk | U − uk )

∑
uneg

p
(
uneg | U − uk

)
p
(
uneg

) ⎤⎥⎥⎥⎥⎦
≈ 1

K + 1

K∑
k=0

Euk log

[
1 +

p (uk )
p (uk | U − uk )

(N − 1) E
uneg

p
(
uneg | U − uk

)
p
(
uneg

) ]

=
1

K + 1

K∑
k=0

Euk log

[
1 +

p (uk )
p (uk | U − uk )

(N − 1)
]
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≥ 1

K + 1

K∑
k=0

Euk log

[
p (uk )

p (uk | U − uk )
N

]

= −Euk I (ui ;U − uk ) + log(N ).
(15)

This proof partially refers to the ideas from the literature [34]. It shows that minimizing
Equation (13) results in maximizing the lower bound of the mutual information of each view uk
to the other views {U−uk }, k ∈ {0, . . . ,K}. Note that a pairwise multi-view contrastive learning
model was proposed in Reference [49]. However, the time complexity of the pairwise contrastive
model grows exponentially with the number of views, which is not practical when the number of
views is large. In contrast, the complexity of Equation (13) is linear with the number of views. �

Overall loss. To sum up, we combine the main loss function �main in Equation (9), the sum of
individual losses from different views �indiv in Equation (11), and the contrastive loss �contrast in
Equation (13) to construct an overall loss to train the proposed model,

�combine = �main + λ1�indiv + λ2�contrast, (16)

where λ1 and λ2 are the hyper-parameters used to control the weights of the regularization com-
ponents.

3.7 Time Complexity Discussion

We compare the training time complexity of the proposed model with existing GNN-based models
for sequential recommendation. To compare the complexity under the sequential recommendation
setting, we apply GNNmodels to process the user-item graph, obtain the embeddings of items, and
input the embeddings into the transformer model. Suppose we have a graph G with n nodes and
e edges in total. We train the model with batch size s . The number of training samples is M . The
number of neighbours being sampled for each node is h. The number of GNN layers is K . The
time complexity for a fixed-length transformer is constant T . The dimension of embedding size
is d . Thus, the time complexity of the proposed model in each epoch is O(hKdM +MKT ), where
hK represents the intra-hop aggregation. The proposed model’s time complexity linearly increases
with the expansion of the number of sampled neighbours h, and the sub-graph size K .

To show the time complexity comparison of our model with the state-of-the-art graph-based
models, such as GCN [24], GraphSage [13], FastGCN [5], and Cluster-GCN [6], in the same se-
quential recommendation settings, we take the aforementioned models as the graph-backbone.
For each user behavior, the graph-backbone takes the user-item interaction graph as the input
and outputs the embedding of that behavior. Then, we input the sequence of behavior embed-
dings into a transformer model to predict the next behavior of that user. In Table 2, we show the
comparison of the training complexity of our model with the aforementioned models. Moreover,
K  h  n  m, and b  n are in common recommendation scenarios. Therefore, compared to
the GCN+SR (SR stands for sequential recommendation with transformers), GraphSage+SR, Fast-
GCN+SR and Cluster-GCN+SR, our model performs significantly faster. Furthermore, we record
the time spent of the aforementioned methods for training one batch of data from the ML-1M
dataset in Table 2, with the batch size of 256 and the hidden dimension of 128 on a single 1080Ti
GPU. It is worth noting that our model achieves 6.2× and 8.1× faster compared to FastGCN +
transformers and GCN + transformers, respectively.
The reduction in time complexity is primarily attributed to the use of our proposed multi-hop

graph aggregation networks. The graph aggregation is primarily achieved through multi-hop ag-
gregation, wherein the main computation involves finding k-hop neighbors, which can be per-
formed during the pre-processing phase. Additionally, employing sparse multi-hop aggregation
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Table 2. Time Comparison of Training Each Epoch for GNN+SR (Sequential Recommendation)

Training Algorithms

Model Time Complexity Time/batch

GCN[24] with sequential recommendation O
(
(Kmd+Knd2)M

b
+MT

)
0.5347 s

GraphSage [13] with sequential recommendation O
(
(hKnd2)M

b
+MT

)
23.4390 s

FastGCN [5] with sequential recommendation O
(
(Khnd2)M

b
+MT

)
0.4126 s

Cluster-GCN [6] with sequential recommendation O
(
(Kmd+Knd2)M

b
+MT

)
0.5119 s

Ours O(hKdM +MKT ) 0.0659 s

n is the total number of nodes. M is the total number of training samples.m is the total number of edges. K is

the number of layers. b is the batch size. h is the number of neighbors being sampled for each node. For

simplicity, the dimensions of the node hidden features remain constant, denoted by d . The time complexity for

processing each fixed length sequence by the transformer is constant, denoted by T .

can boost performance speed for rapidly changing graphs, where the embedding of each graph
node is updated after every training step.
Moreover, the utilization of the Dirichlet sampling method does not increase the complexity of

the training process, as it primarily influences the sampling weights of each k-hop neighbor and
does not add computation cost to the model. In comparison to other baseline methods, our multi-
hop graph aggregation networks can be easily integrated into other backbone models, which we
will discuss in detail in Section 5.1.5.

Overall, our proposed model boasts numerous advantages, such as reduced time complexity,
increased performance speed, adaptability to various backbone models, and the potential for en-
hanced recommendation accuracy. The incorporation of the Dirichlet sampling method enables
our approach to strike a balance between exploration and exploitation during the training process,
resulting in more stable robustness. The combination of these benefits, along with the potential
for wider applications across different domains, establishes our proposed method as a promising
solution for recommendation systems. In the following section, we will elaborate on extensive
experiments to further evaluate our model’s performance and showcase the effectiveness of our
proposed approach.

4 EXPERIMENTS

In this section, we present comprehensive experiments to showcase the advantages and effective-
ness of our model and its individual components. We assess our model using five publicly available
datasets: MovieLens-1M,1 Yelp,2 Amazon Video Games,3 Amazon CDs,4 and Tmall.5 MovieLens
datasets serve as widely recognized benchmarks for recommendation systems, containing movie
reviews from a prominent movie review website. The Amazon Video Games and Amazon CDs
datasets comprise user reviews for products in the video game and CD categories on Amazon, re-
spectively. Meanwhile, the Yelp dataset features user ratings for various businesses on Yelp. Last,
the Tmall dataset includes user feedback from the e-commerce platforms Tmall and Taobao. Table 3
provides detailed statistics for each dataset.

1https://grouplens.org/datasets/movielens/1m/
2https://www.yelp.com/dataset
3https://jmcauley.ucsd.edu/data/amazon/
4https://jmcauley.ucsd.edu/data/amazon/
5https://tianchi.aliyun.com/dataset/dataDetail?dataId=53
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Table 3. Statistics of the Experimented Data

Dataset User # Item # Interaction # Avg. actions/user #

Yelp 25,677 25,815 0.7M 26.5

Movielens-1M 6,040 3,707 1.0M 163.5

Video Game 24,303 10,674 207k 8.51

CD 75,258 64,444 1.0M 13.3

Tmall 48,618 40,729 335k 6.9

4.1 Evaluation Metrics

To evaluate the performance of the recommendation models, we adopt the commonly used leave-
one-out evaluation, i.e., next-item prediction task [15, 23]. We split the dataset into train, vali-
dation and test set: for each user, we take the last item of the behavior sequence as the test set,
the second-last as the validation set, and the rest as the train set. We evaluate all the methods
in terms of Hit Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG). HR@N
measures the average number of positive items being retrieved in the generated top-N recom-
mendation list for each user. NDCG@N extends HR@N by considering the positions of retrieved
positive items in the top-N recommendation list. A higher value in the metric reflects a higher
performance.
In this work, we opt for the full-ranking strategy over the sampling-based ranking strategy

when evaluating recommendation performance, as suggested by Reference [25]. Specifically, for
each user, we sort all the candidate items in descending order based on the predicted scores and
choose N top-ranked items as the top-N recommendation list. In the experiments, we empirically
set N to 5, 10, and 20. As we only have one ground truth item for each user in the testing data,
HR@N is equivalent to Recall@N and proportional to Precision@N .

4.2 Baseline Methods

To show the effectiveness of our method, we include two groups of recommendation baselines6:
graph-based recommendation methods, including:

(a) Light-GCN [14] uses Graph Convolutional Networks to learn users’ preferences on items
from the bipartite user-item interaction graph.
(h) DHCN [63] designs Hypergraph Convolutional Networks to capture both session graph
and global graph information.
(i) SUGER [3] proposes Interest-fusion Graph Convolutional Layers and Interest-extraction
Graph Pooling Layers to extract long-/short-term interest for sequential prediction.
(j) GES [79] conducts graph convolution on the hybrid item graph to generate smoothed
item embeddings.
(l) SRJGraph [72] proposes a GNN-based CTR model to apply to both search and recommen-
dation scenarios.
(m) SAPL [37] designs a reinforcement learning strategy for learning users’ sentiments on
items to correct recommendations.
(n) ReMR [57] adopts a reinforcement learning framework for multi-level recommendation
reasoning.
(r) KERL [52] fuses knowledge graph information into a RL framework for sequential rec-
ommendation.

6The serial numbers of the methods correspond to Table 4.
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We also adopt the following well-known sequential recommendation methods, which are not
based on graph architectures:

(b) Caser [46] employs CNN in both horizontal and vertical ways to model high-order
Markov chains of users’ behaviors.
(c) SASRec [23] employs a transformer model to capture the user’s sequential behavior and
predict the next item for the recommendation.
(d) GRU4REC [17] adopts Recurrent Neural Networks with multiple GRU layers to sequen-
tially predict users’ next behaviors.
(e) HGN [32] hierarchically combines gating networks to capture user’s intentions based on
the user’s features and sequential behaviors.
(f) Bert4Rec [45] is based on SARec [23] architecture. It uses the BERT [9] architecture in-
stead of transformers to extract user’s intentions and conduct sequential predictions.
(g) STOSA [10] uses the Wasserstein self-attention networks to capture users’ behavior pat-
terns from their sequential behavior histories. It is one of the state-of-the-art non-graph-
based sequential recommendation methods.
(k) DIEN [75] designs the interest evolution network for CTR prediction.
(o) RKSA [22] is a sequential recommendation model that uses relation-aware kernelized
self-attention to enhance the prediction.
(p) MT4SR [10] adopts a multi-relational transformer to capture the auxiliary item relation-
ships in sequential recommendations.
(q) DFAR [28] uses a dual-interest disentangling method to factorize the relation between
different types of feedback and decouple positive and negative interests before performing
disentanglement on their representations.

4.3 Experiment Settings

For a fair comparison, we adopt the code provided by the corresponding authors or implement
the method if the code is not provided. All other hyper-parameters and initialization strategies are
according to the suggestions of the methods’ authors. We also tune the parameters to make the
baseline methods perform well on different datasets using the validation set. We implement our
model using PyTorch and train the model using Adam optimizer with a learning rate of 0.001. We
set the maximum sequence length L = 100 for all datasets. We choose graph size from {1, 2, 3},
the number of transformer layers from {1, 2, 3} and the number of attention heads from {1, 2, 4}.
We vary the embedding size in {32, 64, 128}. We further conduct paired per-user significance tests
according to the method in the literature [44], verifying that all the improvements are statistically
significant for p < 0.001. All models are trained on the NVIDIA GeForce GTX 1080 Ti GPU.

5 RESULTS AND ANALYSIS

The experiment results for all the methods on the five datasets with HR@N and NDCG@N are
shown in Tables 4, 5, 6, 7, and 8, respectively. From the results, we can infer that, in general, our se-
quential recommendation method can outperform the state-of-the-art sequential recommendation
methods. The results show that our method outperforms all the baselines in various datasets. The
performance of our method largely improves on datasets ML-1M and Yelp. On Yelp, our model
achieved 0.0738 on HR@20, compared to SOTA graph-based sequential recommendation mod-
els such as SURGE, which is 0.0692 on HR@20 and GES, which is 0.0596 on HR@20, our model
achieves 6.7% and 23.8% improvements. SinceML-1M and Yelp datasets are based on user’s reviews,
the connections between items are more correlated and, therefore, a large amount of information
can be stored in the item-to-item connections. Therefore, applying items’ sub-graphs can help
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Table 4. Recommendation Performance Achieved by Different Methods in Terms

of HR and NDCG on the Yelp Dataset

Methods Yelp

HR@5 NDCG@5 HR@10 NDCG@10 HR@20 NDCG@20

(a) Light-GCN 0.0191 0.0118 0.0395 0.0174 0.0586 0.0225
(b) Caser 0.0185 0.0110 0.0361 0.0178 0.0597 0.0239
(c) SASRec 0.0224 0.0138 0.0425 0.0214 0.0689 0.0281
(d) GRU 0.0196 0.0118 0.0343 0.0165 0.0558 0.0220
(e) HGN 0.0231 0.0147 0.0401 0.0198 0.0652 0.0261
(f) BERT4Rec 0.0198 0.0113 0.0387 0.0189 0.0599 0.0241
(g) STOSA 0.0223 0.0138 0.0414 0.0204 0.0657 0.0265
(h) DHCN 0.0179 0.0112 0.0319 0.0155 0.0532 0.0208
(i) SURGE 0.0239 0.0113 0.0429 0.0219 0.0692 0.0288
(j) GES 0.0187 0.1106 0.0343 0.0203 0.0596 0.0246
(k) DIEN 0.0205 0.0107 0.0371 0.0187 0.0674 0.0268
(l) SRJGraph 0.0204 0.0131 0.0421 0.0208 0.0675 0.0277
(m) SAPL 0.0257 0.0161 0.0446 0.0217 0.0716 0.0287
(n) ReMR 0.0248 0.0156 0.0437 0.0215 0.0711 0.0283
(o) RKSA 0.0231 0.0147 0.0438 0.0218 0.0694 0.0282
(p) MT4SR 0.0258 0.0165 0.0440 0.0221 0.0723 0.0284
(q) DFAR 0.0229 0.0145 0.0429 0.0213 0.0691 0.0276
(r) KERL 0.0224 0.0138 0.0424 0.0210 0.0692 0.0279
(s) Ours 0.0276 0.0174 0.0453 0.0230 0.0738 0.0299

The best results are in boldface, and the second-best results are underlined. The

improvements achieved by our model over baseline methods are significant with p-value

smaller than 0.001.

Table 5. Recommendation Performance Achieved by Different Methods in Terms

of HR and NDCG on the ML-1M Dataset

Methods ML-1M

HR@5 NDCG@5 HR@10 NDCG@10 HR@20 NDCG@20

(a) Light-GCN 0.1145 0.0695 0.1610 0.0857 0.2631 0.1146
(b) Caser 0.1272 0.0808 0.2017 0.1048 0.2930 0.1261
(c) SASRec 0.1288 0.0805 0.1877 0.0950 0.2611 0.1153
(d) GRU 0.0984 0.0635 0.1522 0.0804 0.2341 0.1012
(e) HGN 0.1281 0.0825 0.1899 0.0964 0.2836 0.1231
(f) BERT4Rec 0.1152 0.0712 0.1658 0.0894 0.2345 0.1091
(g) STOSA 0.1302 0.0826 0.1881 0.1013 0.2741 0.1221
(h) DHCN 0.1290 0.0812 0.1697 0.0941 0.2329 0.1025
(i) SURGE 0.1378 0.0875 0.2037 0.1102 0.2957 0.1278
(j) GES 0.1320 0.0815 0.1737 0.0955 0.2474 0.1085
(k) DIEN 0.1175 0.0754 0.1792 0.0912 0.2540 0.1106
(l) SRJGraph 0.1217 0.0784 0.1817 0.0927 0.2618 0.1147
(m) SAPL 0.1483 0.0942 0.2247 0.1086 0.3017 0.1338
(n) ReMR 0.1451 0.0931 0.2135 0.1050 0.2986 0.1314
(o) RKSA 0.1357 0.0824 0.1978 0.1024 0.2847 0.1201
(p) MT4SR 0.1507 0.0869 0.2314 0.1132 0.3124 0.1411
(q) DFAR 0.1368 0.0841 0.1982 0.1031 0.2862 0.1224
(r) KERL 0.1371 0.0836 0.1994 0.1047 0.2934 0.1253
(s) Ours 0.1629 0.1075 0.2519 0.1352 0.3620 0.1635

The best results are in boldface, and the second-best results are underlined. The

improvements achieved by our model over baseline methods are significant with p-value

smaller than 0.001.
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Table 6. Recommendation Performance Achieved by Different Methods in Terms

of HR and NDCG on the Video Games Dataset

Methods Video Games

HR@5 NDCG@5 HR@10 NDCG@10 HR@20 NDCG@20

(a) Light-GCN 0.0171 0.0116 0.0265 0.0152 0.0459 0.0201
(b) Caser 0.0182 0.0126 0.0281 0.0156 0.0455 0.0198
(c) SASRec 0.0573 0.0352 0.0836 0.0435 0.1238 0.0554
(d) GRU 0.0436 0.0277 0.0705 0.0361 0.1109 0.0463
(e) HGN 0.0456 0.0293 0.0760 0.0391 0.1177 0.0492
(f) BERT4Rec 0.0555 0.0348 0.0815 0.0425 0.1185 0.0535
(g) STOSA 0.0602 0.0391 0.0962 0.0501 0.1427 0.0622
(h) DHCN 0.0470 0.0295 0.0794 0.0399 0.1222 0.0507
(i) SURGE 0.0587 0.0378 0.0875 0.0415 0.1246 0.0542
(j) GES 0.0618 0.0375 0.1031 0.0503 0.1421 0.0614
(k) DIEN 0.0528 0.0334 0.0803 0.0412 0.1185 0.0506
(l) SRJGraph 0.0514 0.0327 0.0756 0.0392 0.1071 0.0459
(m) SAPL 0.0608 0.0381 0.0912 0.0485 0.1419 0.0610
(n) ReMR 0.0601 0.0374 0.0903 0.0480 0.1397 0.0601
(o) RKSA 0.0586 0.0367 0.0849 0.0455 0.1281 0.0572
(p) MT4SR 0.0614 0.0389 0.0916 0.0487 0.1421 0.0608
(q) DFAR 0.0593 0.0387 0.0862 0.0476 0.1304 0.0595
(r) KERL 0.0598 0.0381 0.0877 0.0496 0.1327 0.0598
(s) Ours 0.0650 0.0416 0.1035 0.0536 0.1577 0.0669

The best results are in boldface, and the second-best results are underlined. The

improvements achieved by our model over baseline methods are significant with p-value

smaller than 0.001.

Table 7. Recommendation Performance Achieved by Different Methods in Terms

of HR and NDCG on the CD Dataset

Methods CD

HR@5 NDCG@5 HR@10 NDCG@10 HR@20 NDCG@20

(a) Light-GCN 0.0098 0.0061 0.0152 0.0079 0.0254 0.0105
(b) Caser 0.0086 0.0053 0.0145 0.0072 0.0248 0.0098
(c) SASRec 0.0342 0.0203 0.0594 0.0272 0.0814 0.0364
(d) GRU 0.0084 0.0053 0.0144 0.0072 0.0239 0.0096
(e) HGN 0.0289 0.0187 0.0456 0.0239 0.0697 0.0303
(f) BERT4Rec 0.0335 0.0195 0.0568 0.0252 0.0795 0.0332
(g) STOSA 0.0324 0.0215 0.0494 0.0271 0.0742 0.0331
(h) DHCN 0.0176 0.0107 0.0298 0.0147 0.0476 0.0191
(i) SURGE 0.0315 0.0205 0.0482 0.0261 0.0722 0.0337
(j) GES 0.0351 0.0202 0.0620 0.0282 0.0971 0.0371
(k) DIEN 0.0304 0.0181 0.0567 0.0245 0.0779 0.0338
(l) SRJGraph 0.0317 0.0194 0.0574 0.0263 0.0792 0.0347
(m) SAPL 0.0407 0.0253 0.0649 0.0324 0.0925 0.0412
(n) ReMR 0.0390 0.0243 0.0638 0.0316 0.0901 0.0402
(o) RKSA 0.0367 0.0224 0.0613 0.0289 0.0847 0.0384
(p) MT4SR 0.0391 0.0246 0.0643 0.0317 0.0918 0.0412
(q) DFAR 0.0382 0.0237 0.0631 0.0296 0.0869 0.0390
(r) KERL 0.0385 0.0241 0.0621 0.0295 0.0858 0.0392
(s) Ours 0.0439 0.0283 0.0682 0.0360 0.1004 0.0440

The best results are in boldface, and the second-best results are underlined. The

improvements achieved by our model over baseline methods are significant with p-value

smaller than 0.001.
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Table 8. Recommendation Performance Achieved by Different Methods in Terms

of HR and NDCG on the Tmall Dataset

Methods Tmall

HR@5 NDCG@5 HR@10 NDCG@10 HR@20 NDCG@20

(a) Light-GCN 0.1741 0.1432 0.2047 0.1605 0.2323 0.1792
(b) Caser 0.1399 0.1233 0.1544 0.1280 0.1678 0.1314
(c) SASRec 0.3549 0.2749 0.4347 0.3047 0.4747 0.3149
(d) GRU 0.2741 0.2394 0.3004 0.2480 0.3253 0.2543
(e) HGN 0.1324 0.1071 0.1610 0.1156 0.1910 0.1232
(f) BERT4Rec 0.3349 0.2618 0.4275 0.2975 0.4579 0.3067
(g) STOSA 0.4039 0.3011 0.4334 0.3308 0.4802 0.3326
(h) DHCN 0.4126 0.3175 0.4576 0.3329 0.5164 0.3467
(i) SURGE 0.3743 0.2847 0.4480 0.3146 0.4848 0.3185
(j) GES 0.4014 0.3090 0.4565 0.3345 0.5108 0.3380
(k) DIEN 0.3067 0.2473 0.3961 0.2758 0.4536 0.2904
(l) SRJGraph 0.2935 0.2278 0.3847 0.2646 0.4419 0.2851
(m) SAPL 0.3930 0.3023 0.4584 0.3206 0.5036 0.3317
(n) ReMR 0.3859 0.2981 0.4512 0.3168 0.4954 0.3253
(o) RKSA 0.3692 0.2847 0.4453 0.3124 0.4821 0.3196
(p) MT4SR 0.3970 0.3012 0.4602 0.3225 0.5127 0.3380
(q) DFAR 0.3758 0.2931 0.4503 0.3152 0.4921 0.3247
(r) KERL 0.3727 0.2914 0.4531 0.3209 0.4952 0.3277
(s) Ours 0.4169 0.3236 0.4785 0.3433 0.5313 0.3583

The best results are in boldface, and the second-best results are underlined. The

improvements achieved by our model over baseline methods are significant with p-value

smaller than 0.001.

improve the model’s representation capabilities. For e-commerce datasets, e.g., Amazon CD and
Video Games, we can observe relatively high improvements in the HR and NDCG scores. In the
Tmall dataset, the improvement is relatively limited, since in this dataset we consider each session
as an independent user and the user histories are sparse, the user preference is relatively random
with respect to the item dependency due to the sparsity.

5.1 Ablation Study

We perform ablation studies on our model by showing how different components of our model
can affect the recommendation performance in the following aspect:

— The usage of item dependency sub-graphs: whether the sub-graph improves the recommen-
dation accuracy and how the sub-graph size affects the model performance.

— Dirichlet sampling: how the Dirichlet sampling with hyper-parameter α affects the perfor-
mance.

— Hyperparameters: how the hyper-parameters, the embedding size, λ1 and λ2, affect the
model’s performance.

We also investigate two advantage aspects of our model:

— The adaptation of our proposed graph-based multi-view model: Can our model be adapted
to other sequential user behavior encoders except for the transformer networks?

— Can other types of item correlations be adopted in our model?

5.1.1 Impact of Using ItemDependency Sub-graphs. To justify the effectiveness of applying item
sub-graphs to the sequential recommendation, we show how the sub-graph’s size can affect the
performance of our model. The results of using different sub-graph sizes on the four datasets
are shown in Table 9. From the experiment, we can infer that with the sub-graphs, our model
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Table 9. Ablation Study for HR@10 and NDCG@10 with Different Sub-graph Sizes

Dataset Yelp ML-1M Video Games CD
Metric HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

0-hop 0.0425 0.0214 0.1877 0.0950 0.0836 0.0435 0.0594 0.0272

1-hop 0.0454 0.0225 0.2434 0.1330 0.0942 0.0478 0.0655 0.0341
2-hop 0.0453 0.0230 0.2583 0.1409 0.1068 0.0543 0.0682 0.0360

3-hop 0.0450 0.0218 0.2519 0.1297 0.1010 0.0527 0.0671 0.0350

0-hop refers to the SASRec method.

Fig. 4. Ablation study for HR@10 and NDCG@10 with different α values.

outperforms the SASRec model, which does not employ an item dependency graph to help the
model make predictions. In addition, our model achieves high performance at around 2-hop sub-
graph size. Using too large sub-graphs may hinder the performance, since when the sub-graph is
too large, the dependencies between the centre item and border items of the sub-graph are not
informative enough for predicting users’ preferences.

5.1.2 Impact Dirichlet Sampling Parameter α . The Dirichlet Sampling Parameter {α }K
k=1

con-

trols the variance of the randomly sampled dependency scores T
(k )
i, j , which serves as an important

hyper-parameter to mitigate the inductive bias and enhance our model’s prediction accuracy.
Figure 4 shows the performance of our 2-hop sub-graph model with different Dirichlet sampling

parameters α . We calculate the Dirichlet parameter for each item in the sub-graph as α (k )
j = α ·T(k )

i, j

for items j in the kth hop of the sub-graph centred around item i . During the training, the items
transition probability T is sampled fromD(α1, . . . ,αK ). With high α , the sampling is more concen-
trated around the expectation of the Dirichlet distribution, which is the true weight distribution
obtained from the item-item dependency graph. From the results, we can infer that by creating
perturbations to the item-item dependency graph, the model can achieve higher accuracy in the
test set than the model without perturbations. Meanwhile, the perturbations need to be concen-

trated around the empirical estimation of the transition probability T
(k )
i, j to reduce the inaccuracy

of the sampling.

5.1.3 Impact of the Dimensionality of Hidden Variables. We conduct experiments with embed-
ding dimensionality from {16, 32, 64, 128}, to test the robustness and better understand the effect
of dimensionality on the performance of our model. The results on four datasets are shown in
Figure 5. It can be observed that with a small dimension of embedding size, e.g., 16, our model
achieved inferior performance on all the datasets. Thus, a small embedding size is not sufficient to
express the latent features of users and items. By increasing the dimension of the embedding, the
model’s performance improves and approaches stability when the dimension reaches 128.

5.1.4 Impact of λ1 and λ2. In Equation (16), λ1 and λ2 are hyper-parameters to control the
weight of losses from individual views and contrastive losses among the views, respectively. Prop-
erly controlling the weight of these two terms can enhance the performance of the model. In

ACM Trans. Inf. Syst., Vol. 42, No. 6, Article 141. Publication date: June 2024.



141:22 T. Luo et al.

Fig. 5. Ablation study for HR@10 and NDCG@10 with different embedding sizes: 16, 32, 64, and 128.

Fig. 6. Ablation study for HR@10 and NDCG@10 with different λ1 and λ2 values. The left two figures show

the performance for different λ1 values, and the right two figures show the performance for different λ2
values.

Table 10. Ablation Study on the Adaptability of Our Model

Dataset Yelp ML-1M Video Games CD
Metric HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

Transformer 0.0425 0.0214 0.1877 0.0950 0.0836 0.0435 0.0594 0.0272
Transformer + graph multi-view 0.0454 0.0230 0.2583 0.1409 0.1068 0.0543 0.0682 0.0360

HGN 0.0401 0.0198 0.1899 0.0964 0.0760 0.0391 0.0456 0.0239
HGN + graph multi-view 0.0428 0.0212 0.2081 0.1083 0.0816 0.0415 0.0483 0.0246

GRU 0.0343 0.0165 0.1522 0.0804 0.0705 0.0361 0.0144 0.0072
GRU + graph multi-view 0.0368 0.0179 0.1710 0.0927 0.0758 0.0380 0.0249 0.0127

Caser 0.0361 0.0178 0.2018 0.1048 0.0280 0.0156 0.0145 0.0072
Caser + graph multi-view 0.0382 0.0185 0.2246 0.1137 0.0492 0.0251 0.0286 0.0146

We fit our proposed multi-view graph model into different encoder networks: HGN, GRU, and Caser.

Figure 6, we show the impact of varying different values of λ1 and λ2 to the performance of our
model on the datasets Yalp and ML-1M. When λ1 = 0 or λ2 = 0, the corresponding loss term is
removed from our proposed model. As can be seen a moderate weight on the regularization terms
enhances the performance of our model.

5.1.5 Adaptability to Different Encoder Networks. Our proposed graph-based sequential recom-
mendation model can not only be applied to transformers backbone but also able to enhance repre-
sentation learning for other sequential networks such as RNNs. In Table 10, we show the adaptivity
of our model to several commonly used sequential encoders including user gating networks (i.e.,
HGN), RNN module (i.e., GRU), and convolution networks (i.e., Caser). In this experiment, we re-
place the default transformer networks with the aforementioned networks, while keeping other
parts the same as our proposed model. The results show that our graph-based multi-view model
enhances the performance of these architectures. Specifically, the Caser model’s performance in-
creases from 0.028 to 0.0496 and from 0.0145 to 0.0286 on HR@10 in video games and CD datasets,
respectively.
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Table 11. Ablation Study for Different Item Graph Construction Methods

Dataset ML-100k Games Steam ML-1M
Metric HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

(a) Time sequence 0.0453 0.0230 0.2519 0.1352 0.1020 0.0536 0.0682 0.0360

(b) Co-occurrence 0.0446 0.0221 0.2506 0.1345 0.0948 0.0483 0.0539 0.0287

We compare our proposed item graph construction through time sequence, shown in (a); as well as the item graph

construction through co-occurrence, shown in (b).

5.1.6 Forms of Item Correlation Graphs. In Table 11(b), we adopt another commonly used item-
correlation graph: If two items are clicked by the same user, then we add an edge to the item pair,
and if the edge has been added, then we add +1 to the edge’s weight. After constructing the graph,
we normalized the weights to make the adjacency matrix symmetrically column-stochastic, i.e.,
the sum of each column of the adjacency matrix is one. Since the adjacency matrix is symmetric,
it is also row-stochastic. In the following steps, we use the normalized item-correlation graph
to train our model, and the rest of the procedures follow our method in Section 3. Compared to
Table 11(a), which represents our default proposed graph construction method, we can recognize
that constructing item-dependency graphs based on the time sequence of user’s behaviors achieves
higher performance, which also serves as a key aspect in the sequential recommendations.
To summarize, wemainly contribute the performance advantages of our model into four aspects,

— The transformer model can perfectly handle the item sequences and learn the item embed-
dings with respect to the user’s trend of preference.

— The usage of item dependency sub-graphs and the hierarchical graph aggregation model can
help to improve the representation capability and accuracy.

— The formation of multiple views and the application of mutual information maximization
enhance the model’s performance.

— The usage of Dirichlet sampling can mitigate the stiffness of the sub-graphs. By involving
perturbations of the graph sampling, the model can learn a more robust estimation of the
user’s preference.

Together, as demonstrated in the ablation experiments, these components contribute to the
model’s overall effectiveness in addressing recommendation challenges and provide a powerful
and efficient solution for predicting users’ next preferred items in a general sequential recommen-
dation setting.

6 CONCLUSIONS AND FUTURE WORK

In this article, we propose a multi-view graph-based sequential recommendation model, in which
we design the hierarchical graph aggregation networks to aggregate local information of items
from the item dependency graph, and we apply the transformer model to process the sub-graph
representations of each user-clicked item. Finally, we combine the representations from multiple
views to predict the next preferred item by the user. In our model, we create Dirichlet weight sam-
pling andmutual informationmaximization techniques to enhance our model’s accuracy. Dirichlet
weight sampling enables our model to dynamically sample multi-hop neighbours with low time
and memory costs while preventing our model from overfitting on specific sets of high-weighted
neighbours. From the time complexity perspective, we demonstrate that our model is suitable for
modeling user’s sequential behaviors with evidently low time cost, compared to applying other
types of GNN-based user behavior modeling in sequential recommendations.
To evaluate our model, we conduct extensive experiments using five publicly available recom-

mendation datasets and compare its performance against multiple state-of-the-art baselines. Our
model consistently outperforms the competing baselines. Ablation studies further confirm the
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effectiveness of each component in our model. In future work, we plan to generalize our model for
personalized recommendations that balance long-term and short-term user preferences, ensuring
a more nuanced understanding of users’ interests. Another promising area is to expand our
model’s applicability by incorporating general knowledge graphs, enabling the capture of a wider
range of relationships and information for improved recommendations.

REFERENCES

[1] M. Mehdi Afsar, Trafford Crump, and Behrouz Far. 2022. Reinforcement learning based recommender systems: A

survey. Comput. Surveys 55, 7 (2022), 1–38.

[2] Renqin Cai, Jibang Wu, Aidan San, Chong Wang, and Hongning Wang. 2021. Category-aware collaborative sequen-

tial recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in

Information Retrieval (SIGIR’21). 388–397.

[3] Jianxin Chang, Chen Gao, Yu Zheng, Yiqun Hui, Yanan Niu, Yang Song, Depeng Jin, and Yong Li. 2021. Sequential

recommendation with graph neural networks. In Proceedings of the Annual International ACM Conference on Research

and Development in Information Retrieval (SIGIR’21). 378–387.

[4] Huiyuan Chen, Lan Wang, Yusan Lin, Chin-Chia Michael Yeh, Fei Wang, and Hao Yang. 2021. Structured graph con-

volutional networks with stochastic masks for recommender systems. In Proceedings of the Annual International ACM

Conference on Research and Development in Information Retrieval (SIGIR’21). 614–623.

[5] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. Fastgcn: Fast learning with graph convolutional networks via importance

sampling. Retrieved from https://arXiv:1801.10247

[6] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. 2019. Cluster-gcn: An efficient al-

gorithm for training deep and large graph convolutional networks. In Proceedings of the ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD’19). 257–266.

[7] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. 2014. On the properties of neural

machine translation: Encoder-decoder approaches. Retrieved from https://arXiv:1409.1259.

[8] Yue Cui, Hao Sun, Yan Zhao, Hongzhi Yin, and Kai Zheng. 2021. Sequential-knowledge-aware next POI recommen-

dation: A meta-learning approach. ACM Trans. Info. Syst. 40, 2 (2021), 1–22.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding. In Proceedings of the Annual Meeting of the Association for Computational

Linguistics (ACL’19). 4171–4186.

[10] Ziwei Fan, Zhiwei Liu, Yu Wang, Alice Wang, Zahra Nazari, Lei Zheng, Hao Peng, and Philip S. Yu. 2022. Sequential

recommendation via stochastic self-attention. Retrieved from arXiv:2201.06035.

[11] Hui Fang, Danning Zhang, Yiheng Shu, and Guibing Guo. 2020. Deep learning for sequential recommendation: Algo-

rithms, influential factors, and evaluations. ACM Trans. Info. Syst. 39, 1 (2020), 1–42.

[12] Shanshan Feng, Xutao Li, Yifeng Zeng, Gao Cong, and Yeow Meng Chee. 2015. Personalized ranking metric embed-

ding for next new poi recommendation. In Proceedings of the 24th International Conference on Artificial Intelligence

(IJCAI’15). ACM, 2069–2075.

[13] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation learning on large graphs. Retrieved

from https://arXiv:1706.02216

[14] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. 2020. Lightgcn: Simplifying and

powering graph convolution network for recommendation. In Proceedings of the International ACM SIGIR Conference

on Research and Development in Information Retrieval (SIGIR’20). 639–648.

[15] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. 2017. Neural collaborative filtering.

In Proceedings of the World Wide Web Conference (WWW’17). 173–182.

[16] Balázs Hidasi and Alexandros Karatzoglou. 2018. Recurrent neural networks with top-k gains for session-based rec-

ommendations. In Proceedings of the Conference on Information and Knowledge Management (CIKM’18). 843–852.

[17] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. 2016. Session-based recommendations

with recurrent neural networks. In Proceedings of the International Conference on Learning Representations (ICLR’16).

[18] Balázs Hidasi and Domonkos Tikk. 2016. General factorization framework for context-aware recommendations. Data

Min. Knowl. Discov. 30, 2 (2016), 342–371.

[19] Jin Huang, Zhaochun Ren, Wayne Xin Zhao, Gaole He, Ji-Rong Wen, and Daxiang Dong. 2019. Taxonomy-aware

multi-hop reasoning networks for sequential recommendation. In Proceedings of the ACM International Conference on

Web Search and Data Mining (WSDM’19). 573–581.

[20] Liwei Huang, Yutao Ma, Yanbo Liu, Bohong Danny Du, Shuliang Wang, and Deyi Li. 2023. Position-enhanced and

time-aware graph convolutional network for sequential recommendations. ACM Trans. Info. Syst. 41, 1 (2023), 1–32.

ACM Trans. Inf. Syst., Vol. 42, No. 6, Article 141. Publication date: June 2024.

https://arXiv:1801.10247
https://arXiv:1409.1259
https://arXiv:1706.02216


Collaborative Sequential Recommendations via Multi-view GNN-transformers 141:25

[21] Dietmar Jannach andMalte Ludewig. 2017.When recurrent neural networksmeet the neighborhood for session-based

recommendation. In Proceedings of the 11th ACM Conference on Recommender Systems. 306–310.

[22] Mingi Ji, Weonyoung Joo, Kyungwoo Song, Yoon-Yeong Kim, and Il-Chul Moon. 2020. Sequential recommendation

with relation-aware kernelized self-attention. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34.

4304–4311.

[23] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recommendation. In Proceedings of the IEEE

International Conference on Data Mining (ICDM’18).

[24] Thomas N. Kipf and MaxWelling. 2016. Semi-supervised classification with graph convolutional networks. Retrieved

from https://arXiv:1609.02907

[25] Walid Krichene and Steffen Rendle. 2020. On sampled metrics for item recommendation. In Proceedings of the ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’20). 1748–1757.

[26] Chenliang Li, Xichuan Niu, Xiangyang Luo, Zhenzhong Chen, and Cong Quan. 2019. A review-driven neural model

for sequential recommendation. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI’19).

[27] Jiacheng Li, Yujie Wang, and Julian McAuley. 2020. Time interval aware self-attention for sequential recommendation.

In Proceedings of the ACM International Conference on Web Search and Data Mining (WSDM’20). 322–330.

[28] Guanyu Lin, Chen Gao, Yu Zheng, Jianxin Chang, Yanan Niu, Yang Song, Zhiheng Li, Depeng Jin, and Yong Li. 2023.

Dual-interest Factorization-heads Attention for Sequential Recommendation. In Proceedings of the ACM Web Confer-

ence. 917–927.

[29] Feng Liu, Qing Liu, Wei Guo, Huifeng Guo, Weiwen Liu, Ruiming Tang, Xutao Li, Yunming Ye, and Xiuqiang He. 2020.

Inter-sequence Enhanced Framework for Personalized Sequential Recommendation. Retrieved from https://arXiv:

2004.12118

[30] Yong Liu, Susen Yang, Chenyi Lei, Guoxin Wang, Haihong Tang, Juyong Zhang, Aixin Sun, and Chunyan Miao. 2021.

Pre-training graph transformer with multimodal side information for recommendation. In Proceedings of the ACM

International Conference on Multimedia (ACM MM’21).

[31] Yong Liu, Susen Yang, Yonghui Xu, Chunyan Miao, MinWu, and Juyong Zhang. 2021. Contextualized graph attention

network for recommendation with item knowledge graph. IEEE Trans. Knowl. Data Eng. (2021).

[32] Chen Ma, Peng Kang, and Xue Liu. 2019. Hierarchical gating networks for sequential recommendation. In Proceedings

of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’19). 825–833.

[33] Muyang Ma, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Huasheng Liang, Jun Ma, and Maarten de Rijke. 2022. Im-

proving transformer-based sequential recommenders through preference editing. ACM Trans. Info. Syst. (2022).

[34] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning with contrastive predictive coding.

Retrieved from https://arXiv:1807.03748

[35] Zhiqiang Pan, Fei Cai, Wanyu Chen, Honghui Chen, and Maarten de Rijke. 2020. Star graph neural networks

for session-based recommendation. In Proceedings of the Conference on Information and Knowledge Management

(CIKM’20). 1195–1204.

[36] Zhiqiang Pan, Fei Cai, Yanxiang Ling, and Maarten de Rijke. 2020. An intent-guided collaborative machine for session-

based recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development

in Information Retrieval (SIGIR’20). 1833–1836.

[37] Sung-Jun Park, Dong-Kyu Chae, Hong-Kyun Bae, Sumin Park, and Sang-Wook Kim. 2022. Reinforcement learning

over sentiment-augmented knowledge graphs towards accurate and explainable recommendation. In Proceedings of

the 15th ACM International Conference on Web Search and Data Mining. 784–793.

[38] Ruihong Qiu, Zi Huang, Jingjing Li, and Hongzhi Yin. 2020. Exploiting cross-session information for session-based

recommendation with graph neural networks. ACM Trans. Info. Syst. 38, 3 (2020), 1–23.

[39] Ruihong Qiu, Jingjing Li, Zi Huang, and Hongzhi Yin. 2019. Rethinking the item order in session-based recommen-

dation with graph neural networks. In Proceedings of the Conference on Information and Knowledge Management

(CIKM’19).

[40] RuihongQiu, Hongzhi Yin, Zi Huang, and TongChen. 2020. Gag: Global attributed graph neural network for streaming

session-based recommendation. In Proceedings of the International ACM SIGIR Conference on Research and Development

in Information Retrieval (SIGIR’20).

[41] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. 2016. Sequence level training with recur-

rent neural networks. In Proceedings of the International Conference on Learning Representations (ICLR’16).

[42] Ruiyang Ren, Zhaoyang Liu, Yaliang Li, Wayne Xin Zhao, Hui Wang, Bolin Ding, and Ji-Rong Wen. 2020. Sequential

recommendation with self-attentive multi-adversarial network. Retrieved from https://arXiv:2005.10602.

[43] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factorizing personalized Markov chains for

next-basket recommendation. In Proceedings of the World Wide Web Conference (WWW’10). 811–820.

[44] Guy Shani and Asela Gunawardana. 2011. Evaluating recommendation systems. In Recommender Systems Handbook.

Springer, 257–297.

ACM Trans. Inf. Syst., Vol. 42, No. 6, Article 141. Publication date: June 2024.

https://arXiv:1609.02907
https://arXiv:2004.12118
https://arXiv:1807.03748


141:26 T. Luo et al.

[45] Fei Sun, Jun Liu, JianWu, Changhua Pei, Xiao Lin,WenwuOu, and Peng Jiang. 2019. BERT4Rec: Sequential recommen-

dation with bidirectional encoder representations from transformer. In Proceedings of the Conference on Information

and Knowledge Management (CIKM’19). 1441–1450.

[46] Jiaxi Tang and KeWang. 2018. Personalized top-n sequential recommendation via convolutional sequence embedding.

In Proceedings of the ACM International Conference on Web Search and Data Mining (WSDM’18). 565–573.

[47] Jiaxi Tang and KeWang. 2018. Personalized top-n sequential recommendation via convolutional sequence embedding.

In Proceedings of the 11th ACM International Conference on Web Search and Data Mining. 565–573.

[48] Md Mehrab Tanjim, Congzhe Su, Ethan Benjamin, Diane Hu, Liangjie Hong, and Julian McAuley. 2020. Atten-

tive sequential models of latent intent for next item recommendation. In Proceedings of the Web Conference.

2528–2534.

[49] Yonglong Tian, Dilip Krishnan, and Phillip Isola. 2019. Contrastive multiview coding. Retrieved from https://arXiv:

1906.05849

[50] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia

Polosukhin. 2017. Attention is all you need. Adv. Neural Info. Process. Syst. 30 (2017).

[51] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. 2017. Graph

attention networks. Retrieved from https://arXiv:1710.10903

[52] Pengfei Wang, Yu Fan, Long Xia, Wayne Xin Zhao, ShaoZhang Niu, and Jimmy Huang. 2020. KERL: A knowledge-

guided reinforcement learning model for sequential recommendation. In Proceedings of the 43rd International ACM

SIGIR Conference on Research and Development in Information Retrieval (SIGIR’20). 209–218.

[53] Pengfei Wang, Jiafeng Guo, Yanyan Lan, Jun Xu, Shengxian Wan, and Xueqi Cheng. 2015. Learning hierarchical

representation model for nextbasket recommendation. In Proceedings of the 38th International ACM SIGIR Conference

on Research and Development in Information Retrieval (SIGIR’15). 403–412.

[54] ShoujinWang, Liang Hu, Longbing Cao, Xiaoshui Huang, Defu Lian, andWei Liu. 2018. Attention-based transactional

context embedding for next-item recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence,

Vol. 32.

[55] Wen Wang, Wei Zhang, Shukai Liu, Qi Liu, Bo Zhang, Leyu Lin, and Hongyuan Zha. 2020. Beyond clicks: Modeling

multi-relational item graph for session-based target behavior prediction. In Proceedings of the Web Conference.

[56] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019. Neural graph collaborative filtering. In

Proceedings of the International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’19).

165–174.

[57] Xiting Wang, Kunpeng Liu, Dongjie Wang, Le Wu, Yanjie Fu, and Xing Xie. 2022. Multi-level recommendation rea-

soning over knowledge graphs with reinforcement learning. In Proceedings of the ACM Web Conference. 2098–2108.

[58] ZiyangWang, WeiWei, Gao Cong, Xiao-Li Li, Xian-Ling Mao, and Minghui Qiu. 2020. Global context enhanced graph

neural networks for session-based recommendation. In Proceedings of the Annual International ACM Conference on

Research and Development in Information Retrieval (SIGIR’20). 169–178.

[59] Chao-YuanWu, Amr Ahmed, Alex Beutel, Alexander J. Smola, and How Jing. 2017. Recurrent recommender networks.

In Proceedings of the 10th ACM International Conference on Web Search and Data Mining. 495–503.

[60] Le Wu, Xiangnan He, Xiang Wang, Kun Zhang, and Meng Wang. 2022. A survey on accuracy-oriented neural recom-

mendation: From collaborative filtering to information-rich recommendation. IEEE Trans. Knowl. Data Eng. (2022).

[61] Liwei Wu, Shuqing Li, Cho-Jui Hsieh, and James Sharpnack. 2020. SSE-PT: Sequential recommendation via personal-

ized transformer. In Proceedings of the ACM Conference on Recommender Systems (RecSys’20). 328–337.

[62] Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. 2019. Session-based recommendation

with graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI’19). 346–353.

[63] Xin Xia, Hongzhi Yin, Junliang Yu, Qinyong Wang, Lizhen Cui, and Xiangliang Zhang. 2021. Self-supervised hyper-

graph convolutional networks for session-based recommendation. In Proceedings of the AAAI Conference on Artificial

Intelligence (AAAI’21). 4503–4511.

[64] Xu Xie, Fei Sun, Zhaoyang Liu, ShiwenWu, Jinyang Gao, Jiandong Zhang, Bolin Ding, and Bin Cui. 2022. Contrastive

learning for sequential recommendation. In Proceedings of the International Conference on Data Engineering (ICDE’22).

1259–1273.

[65] Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Jiajie Xu, Victor S. Sheng S. Sheng, Zhiming Cui, Xiaofang Zhou, and

Hui Xiong. 2019. Recurrent convolutional neural network for sequential recommendation. In Proceedings of the World

Wide Web Conference. 3398–3404.

[66] Mingming Xu, Fangai Liu, and Weizhi Xu. 2019. A survey on sequential recommendation. In Proceedings of the Inter-

national Conference on Software Engineering (ICISCE’19).

[67] Lyuxin Xue, Deqing Yang, Shuoyao Zhai, Yuxin Li, and Yanghua Xiao. 2022. Learning dual-view user representations

for enhanced sequential recommendation. ACM Trans. Info. Syst. (2022).

ACM Trans. Inf. Syst., Vol. 42, No. 6, Article 141. Publication date: June 2024.

https://arXiv:1906.05849
https://arXiv:1710.10903


Collaborative Sequential Recommendations via Multi-view GNN-transformers 141:27

[68] Feng Yu, Yanqiao Zhu, Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. 2020. TAGNN: Target attentive graph neural

networks for session-based recommendation. In Proceedings of the Annual International ACM Conference on Research

and Development in Information Retrieval (SIGIR’20). 1921–1924.

[69] Zeping Yu, Jianxun Lian, Ahmad Mahmoody, Gongshen Liu, and Xing Xie. 2019. Adaptive user modeling with long

and short-term preferences for personalized recommendation. In Proceedings of the International Joint Conference on

Artificial Intelligence (IJCAI’19). 4213–4219.

[70] Raphael Yuster and Uri Zwick. 2005. Fast sparse matrix multiplication. ACM Trans. Algor. 1, 1 (2005), 2–13.

[71] Wei Zhang, Zeyuan Chen, Hongyuan Zha, and JianyongWang. 2021. Learning from substitutable and complementary

relations for graph-based sequential product recommendation. ACM Trans. Info. Syst. 40, 2 (2021), 1–28.

[72] Kai Zhao, Yukun Zheng, Tao Zhuang, Xiang Li, and Xiaoyi Zeng. 2022. Joint learning of e-commerce search and

recommendation with a unified graph neural network. In Proceedings of the 15th ACM International Conference on

Web Search and Data Mining. 1461–1469.

[73] Lin Zheng, Naicheng Guo,Weihao Chen, Jin Yu, and Dazhi Jiang. 2020. Sentiment-guided sequential recommendation.

In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval

(SIGIR’20). 1957–1960.

[74] Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang Zhu, and Kun Gai. 2019. Deep interest

evolution network for click-through rate prediction. In Proceedings of the AAAI Conference on Artificial Intelligence

(AAAI’19). 5941–5948.

[75] Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang Zhu, and Kun Gai. 2019. Deep interest

evolution network for click-through rate prediction. In Proceedings of the AAAI Conference on Artificial Intelligence,

Vol. 33. 5941–5948.

[76] Guorui Zhou, Xiaoqiang Zhu, Chengru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li, and Kun

Gai. 2018. Deep interest network for click-through rate prediction. In Proceedings of the ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD’18). 1059–1068.

[77] Kun Zhou, Hui Wang, Ji-Rong Wen, and Wayne Xin Zhao. 2023. Enhancing multi-view smoothness for sequential

recommendation models. ACM Trans. Info. Syst. (2023).

[78] Nengjun Zhu, Jian Cao, Yanchi Liu, Yang Yang, Haochao Ying, and Hui Xiong. 2020. Sequential modeling of hierarchi-

cal user intention and preference for next-item recommendation. In Proceedings of the 13th International Conference

on Web Search and Data Mining. 807–815.

[79] Tianyu Zhu, Leilei Sun, and Guoqing Chen. 2021. Graph-based Embedding Smoothing for Sequential Recommenda-

tion. IEEE Trans. Knowl. Data Eng. (2021).

Received 17 April 2023; revised 20 January 2024; accepted 26 January 2024

ACM Trans. Inf. Syst., Vol. 42, No. 6, Article 141. Publication date: June 2024.


